Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 924
Filtrar
1.
Clin Hypertens ; 30(1): 9, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38556854

RESUMEN

Hypertension is the leading cause of morbidity and mortality worldwide. Hypertension mostly accompanies no symptoms, and therefore blood pressure (BP) measurement is the only way for early recognition and timely treatment. Methods for BP measurement have a long history of development and improvement. Invasive method via arterial cannulation was first proven possible in the 1800's. Subsequent scientific progress led to the development of the auscultatory method, also known as Korotkoff' sound, and the oscillometric method, which enabled clinically available BP measurement. However, hypertension management status is still poor. Globally, less than half of adults are aware of their hypertension diagnosis, and only one-third of them being treated are under control. Novel methods are actively investigated thanks to technological advances such as sensors and machine learning in addition to the clinical needs for easier and more convenient BP measurement. Each method adopts different technologies with its own specific advantages and disadvantages. Promises of novel methods include comprehensive information on out-of-office BP capturing dynamic short-term and long-term fluctuations. However, there are still pitfalls such as the need for regular calibration since most novel methods capture relative BP changes rather than an absolute value. In addition, there is growing concern on their accuracy and precision as conventional validation protocols are inappropriate for cuffless continuous methods. In this article, we provide a comprehensive overview of the past and present of BP measurement methods. Novel and emerging technologies are also introduced with respect to their potential applications and limitations.

2.
J Int Med Res ; 52(4): 3000605241232519, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38573764

RESUMEN

OBJECTIVE: To develop and evaluate a novel feature selection technique, using photoplethysmography (PPG) sensors, for enhancing the performance of deep learning models in classifying vascular access quality in hemodialysis patients. METHODS: This cross-sectional study involved creating a novel feature selection method based on SelectKBest principles, specifically designed to optimize deep learning models for PPG sensor data, in hemodialysis patients. The method effectiveness was assessed by comparing the performance of multiple deep learning models using the feature selection approach versus complete feature set. The model with the highest accuracy was then trained and tested using a 70:30 approach, respectively, with the full dataset and the SelectKBest dataset. Performance results were compared using Student's paired t-test. RESULTS: Data from 398 hemodialysis patients were included. The 1-dimensional convolutional neural network (CNN1D) displayed the highest accuracy among different models. Implementation of the SelectKBest-based feature selection technique resulted in a statistically significant improvement in the CNN1D model's performance, achieving an accuracy of 92.05% (with feature selection) versus 90.79% (with full feature set). CONCLUSION: These findings suggest that the newly developed feature selection approach might aid in accurately predicting vascular access quality in hemodialysis patients. This advancement may contribute to the development of reliable diagnostic tools for identifying vascular complications, such as stenosis, potentially improving patient outcomes and their quality of life.


Asunto(s)
Aprendizaje Profundo , Humanos , Estudios Transversales , Calidad de Vida , Constricción Patológica , Diálisis Renal
3.
J Sex Med ; 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38582607

RESUMEN

BACKGROUND: Models depicting sexual desire as responsive to sexual arousal may be particularly apt for women experiencing arousal or desire difficulties, and the degree to which arousal triggers desire may depend on the relationship context and desire target and timing-yet, these associations have not been directly tested among women with and without sexual interest/arousal disorder (SIAD). AIM: To assess the role of SIAD status and relationship satisfaction in the associations between genital arousal and 4 types of responsive desire. METHODS: One hundred women (n = 27 meeting diagnostic criteria for SIAD) in romantic relationships with men viewed a sexual film (pleasurable intimate depiction of oral sex and penile-vaginal intercourse) while their genital arousal was recorded via vaginal photoplethysmography (n = 63) or thermal imaging of the labia (n = 37). Partner and solitary desire was assessed immediately before and after the film (immediate desire) and 3 days later (delayed desire). OUTCOMES: Outcomes consisted of genital response (z scored by method) and associations between genital response and responsive sexual desire. RESULTS: The key difference between women with and without SIAD was not in their ability to experience genital arousal but in how their genital responses translated to responsive sexual desire. Women with SIAD actually exhibited greater genital arousal than unaffected women. Associations between genital arousal and desire were significant only for women with SIAD and depended on relationship satisfaction and desire type. For women with SIAD with low relationship satisfaction, higher arousal predicted lower immediate desire for a partner; for those with high relationship satisfaction, arousal was either positively related (vaginal photoplethysmography) or unrelated (thermal imaging of the labia) to immediate desire for a partner. Associations with other desire types were not significant. CLINICAL IMPLICATIONS: Patterns of genital arousal and partner-specific responsive desire among women affected with SIAD were indicative of an avoidance model in response to heightened genital arousal, unless relationship satisfaction was high; attending to genital arousal sensations could be a means of triggering sexual desire for women with SIAD who are satisfied in their relationships. STRENGTHS AND LIMITATIONS: This is one of the first sexual psychophysiologic studies to connect relationship factors to patterns of sexual response. The differing arousal assessment procedures and lack of official diagnosis may have attenuated results. The homogeneous sample and in-person session requirement limit generalizability. CONCLUSION: When compared with unaffected women, women affected by SIAD may exhibit stronger arousal responses with sufficiently incentivized sexual stimuli, and the connection between their genital arousal and responsive desire for their partners may be stronger and more dependent on relationship context.

4.
Sensors (Basel) ; 24(7)2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38610312

RESUMEN

Electrocardiogram (ECG) reconstruction from contact photoplethysmogram (PPG) would be transformative for cardiac monitoring. We investigated the fundamental and practical feasibility of such reconstruction by first replicating pioneering work in the field, with the aim of assessing the methods and evaluation metrics used. We then expanded existing research by investigating different cycle segmentation methods and different evaluation scenarios to robustly verify both fundamental feasibility, as well as practical potential. We found that reconstruction using the discrete cosine transform (DCT) and a linear ridge regression model shows good results when PPG and ECG cycles are semantically aligned-the ECG R peak and PPG systolic peak are aligned-before training the model. Such reconstruction can be useful from a morphological perspective, but loses important physiological information (precise R peak location) due to cycle alignment. We also found better performance when personalization was used in training, while a general model in a leave-one-subject-out evaluation performed poorly, showing that a general mapping between PPG and ECG is difficult to derive. While such reconstruction is valuable, as the ECG contains more fine-grained information about the cardiac activity as well as offers a different modality (electrical signal) compared to the PPG (optical signal), our findings show that the usefulness of such reconstruction depends on the application, with a trade-off between morphological quality of QRS complexes and precise temporal placement of the R peak. Finally, we highlight future directions that may resolve existing problems and allow for reliable and robust cross-modal physiological monitoring using just PPG.


Asunto(s)
Electrocardiografía , Fotopletismografía , Estudios de Factibilidad , Benchmarking , Electricidad
5.
Sensors (Basel) ; 24(7)2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38610432

RESUMEN

Introduction: This study aimed to validate the ability of a prototype sport watch (Polar Electro Oy, FI) to recognize wake and sleep states in two trials with and without an interval training session (IT) 6 h prior to bedtime. Methods: Thirty-six participants completed this study. Participants performed a maximal aerobic test and three polysomnography (PSG) assessments. The first night served as a device familiarization night and to screen for sleep apnea. The second and third in-home PSG assessments were counterbalanced with/without IT. Accuracy and agreement in detecting sleep stages were calculated between PSG and the prototype. Results: Accuracy for the different sleep stages (REM, N1 and N2, N3, and awake) as a true positive for the nights without exercise was 84 ± 5%, 64 ± 6%, 81 ± 6%, and 91 ± 6%, respectively, and for the nights with exercise was 83 ± 7%, 63 ± 8%, 80 ± 7%, and 92 ± 6%, respectively. The agreement for the sleep night without exercise was 60.1 ± 8.1%, k = 0.39 ± 0.1, and with exercise was 59.2 ± 9.8%, k = 0.36 ± 0.1. No significant differences were observed between nights or between the sexes. Conclusion: The prototype showed better or similar accuracy and agreement to wrist-worn consumer products on the market for the detection of sleep stages with healthy adults. However, further investigations will need to be conducted with other populations.


Asunto(s)
Sueño , Deportes , Adulto Joven , Humanos , Polisomnografía , Ejercicio Físico , Fases del Sueño
6.
Neth Heart J ; 32(5): 200-205, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38619715

RESUMEN

BACKGROUND: Screening of high-risk patients is advocated to achieve early detection and treatment of clinical atrial fibrillation (AF). The Dutch-GERAF study will address two major issues. Firstly, the effectiveness and feasibility of an opportunistic screening strategy for clinical AF will be assessed in frail older patients and, secondly, observational data will be gathered regarding the efficacy and safety of oral anticoagulation (OAC). METHODS: This is a multicentre study on opportunistic screening of geriatric patients for clinical AF using a smartphone photoplethysmography (PPG) application. Inclusion criteria are age ≥ 65 years and the ability to perform at least three PPG recordings within 6 months. Exclusion criteria are the presence of a cardiac implantable device, advanced dementia or a severe tremor. The PPG application records patients' pulse at their fingertip and determines the likelihood of clinical AF. If clinical AF is suspected after a positive PPG recording, a confirmatory electrocardiogram is performed. Patients undergo a comprehensive geriatric assessment and a frailty index is calculated. Risk scores for major bleeding (MB) are applied. Standard laboratory testing and additional laboratory analyses are performed to determine the ABC-bleeding risk score. Follow-up data will be collected at 6 months, 12 months and 3 years on the incidence of AF, MB, hospitalisation, stroke, progression of cognitive disorders and mortality. DISCUSSION: The Dutch-GERAF study will focus on frail older patients, who are underrepresented in randomised clinical trials. It will provide insight into the effectiveness of screening for clinical AF and the efficacy and safety of OAC in this high-risk population. TRIAL REGISTRATION: NCT05337202.

7.
Eur J Oncol Nurs ; 70: 102587, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38652934

RESUMEN

PURPOSE: The study evaluates the use of heart rate variability (HRV), a measure of autonomic nervous system (ANS) modulation via wearable smart bands, to objectively assess cancer-related fatigue (CRF) levels. It aims to enhance understanding of fatigue by distinguishing between LF/HF ratios and LF/HF disorder ratios through HRV and photoplethysmography (PPG), identifying them as potential biomarkers. METHODS: Seventy-one lung cancer patients and 75 non-cancer controls wore smart bands for one week. Fatigue was assessed using Brief Fatigue Inventory, alongside sleep quality and daily interference. HRV parameters were analyzed to compare groups. RESULTS: Cancer patients showed higher fatigue and interference levels than controls (64.8% vs. 54.7%). Those with mild fatigue had elevated LF/HF disorder ratios during sleep (40% vs. 20%, P = 0.01), similar to those with moderate to severe fatigue (50% vs. 20%, P = 0.01), indicating more significant autonomic dysregulation. Notably, mild fatigue patients had higher mean LF/HF ratios than controls (1.9 ± 1.34 vs. 1.2 ± 0.6, P = 0.01), underscoring the potential of disorder ratios in signaling fatigue severity. CONCLUSIONS: Utilizing wearable smart bands for HRV-based analysis is feasible for objectively assess CRF levels in cancer patients, especially during sleep. By distinguishing between LF/HF ratios and LF/HF disorder ratios, our findings suggest that wearable technology and detailed HRV analysis offer promising avenues for real-time fatigue monitoring. This approach has the potential to significantly improve cancer care by providing new methods for managing and intervening in CRF, particularly with a focus on autonomic dysregulation as a crucial factor.

8.
Physiol Meas ; 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38604181

RESUMEN

Monitoring changes in human HRV (Heart Rate Variability) holds significant importance for protecting life and health.. Studies have shown that Imaging Photoplethysmography (IPPG) based on ordinary color cameras can detect the color change of the skin pixel caused by cardiopulmonary system. Most researchers employed deep learning IPPG algorithms to extract the Blood Volume Pulse (BVP) signal, analyzing it predominantly through the Heart Rate (HR). However, this approach often overlooks the inherent intricate time-frequency domain characteristics in the BVP signal, which cannot be comprehensively deduced solely from HR. The analysis of HRV metrics through the BVP signal is imperative. APPROACH: In this paper, the transformation invariant loss function with distance equilibrium (TIDLE) loss function is applied to IPPG for the first time, and the details of BVP signal can be recovered better. In detail, TIDLE is tested in four commonly used IPPG deep learning models, which are DeepPhys, EfficientPhys, Physnet and TS_CAN, and compared with other three loss functions, which are MAE, MSE, NPCC. MAIN RESULTS: The experiments demonstrate that MAE and MSE exhibit suboptimal performance in predicting LF/HF across the four models, achieving the Statistic of Mean Absolute Error (MAES) of 25.94% and 34.05%, respectively. In contrast, NPCC and TIDLE yielded more favorable results at 13.51% and 11.35%, respectively. Taking into consideration the morphological characteristics of the BVP signal, on the two optimal models for predicting HRV metrics, namely DeepPhys and TS_CAN, the Pearson coefficients for the BVP signals predicted by TIDLE in comparison to the gold-standard BVP signals achieved values of 0.627 and 0.605, respectively. In contrast, the results based on NPCC were notably lower, at only 0.545 and 0.533, respectively. SIGNIFICANCE: This paper contributes significantly to the effective restoration of the morphology and frequency domain characteristics of the BVP signal.

9.
Rev Clin Esp (Barc) ; 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38599519

RESUMEN

OBJECTIVE: Identify and reach consensus on the variables that affect the measurement of oxygen saturation using pulse oximetry. METHODS: We applied inclusion and exclusion criteria to select relevant studies in databases such as Ebsco and PubMed. The search strategies, carried out until December 2023, focused on publications that addressed the technology of pulse oximeters and variables that influence their accuracy. We assessed the risk of bias of the included studies and used standardized methods for synthesis of results. RESULTS: 23 studies were included. The synthesis of the results highlighted that equipment with tetrapolar technology showed greater precision in oxygen saturation measurements. Increased skin pigmentation, hemoglobinopathies and high skin temperatures can lead to an overestimation of SpO2, while factors such as low perfusion, cold skin temperature, nail polish or tattoos, hypoxemia, anemia and high altitude training, they may underestimate it. On the other hand, motion artifacts, light pollution, frequency >150 beats per minute, electromagnetic interference and location of the sensor can cause distortion of the photoplethymography signal. CONCLUSIONS: The synthesis of the results highlighted that skin pigmentation and light interference can lead to an overestimation of SpO2, while other factors such as low perfusion and altitude tend to underestimate it. The studies presented variability and heterogeneity in their designs, evidencing limitations in the consistency and precision of the evidence. Despite these limitations, the results underscore the importance of considering multiple variables when interpreting pulse oximetry measurements to ensure their reliability. The findings have significant implications for clinical practice and future research.

10.
Behav Res Methods ; 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38632165

RESUMEN

Remote photoplethysmography (rPPG) is a low-cost technique to measure physiological parameters such as heart rate by analyzing videos of a person. There has been growing attention to this technique due to the increased possibilities and demand for running psychological experiments on online platforms. Technological advancements in commercially available cameras and video processing algorithms have led to significant progress in this field. However, despite these advancements, past research indicates that suboptimal video recording conditions can severely compromise the accuracy of rPPG. In this study, we aimed to develop an open-source rPPG methodology and test its performance on videos collected via an online platform, without control of the hardware of the participants and the contextual variables, such as illumination, distance, and motion. Across two experiments, we compared the results of the rPPG extraction methodology to a validated dataset used for rPPG testing. Furthermore, we then collected 231 online video recordings and compared the results of the rPPG extraction to finger pulse oximeter data acquired with a validated mobile heart rate application. Results indicated that the rPPG algorithm was highly accurate, showing a significant degree of convergence with both datasets thus providing an improved tool for recording and analyzing heart rate in online experiments.

11.
Heliyon ; 10(7): e28652, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38633637

RESUMEN

Coronary heart disease (CHD) is a leading cause of mortality globally and poses a significant threat to public health. Coronary angiography (CAG) is a gold standard for the clinical diagnosis of CHD, but its invasiveness restricts its widespread application. In this study, we utilized a pulse diagnostic device equipped with pressure and photoelectric sensors to synchronously and non-invasively capture wrist pressure pulse waves and fingertip photoplethysmography (FPPG) of patients undergoing CAG. The extracted features were utilized in constructing random forest-based models to assessing the severity of coronary artery lesions. Notably, Model 3, incorporating both wrist pulse and FPPG features, surpassed Model 1 (solely utilizing wrist pulse features) and Model 2 (solely utilizing FPPG features). Model3 achieved an Accuracy, Precision, Recall, and F1-score of 78.79%, 78.69%, 78.79%, and 78.70%, respectively. Compared to Model1 and Model2, Model 3 exhibited improvements by 4.55%, 5.25%, 4.55%, and 5.12%, and 6.06%, 6.58%, 6.06%, and 6.54% respectively. This fusion of wrist pulse and FPPG features in Model 3 highlights the advantages of multi-source information fusion for model optimization. Additionally, this research provides invaluable insights into the novel development of diagnostic devices imbued with TCM principles and their potential in managing cardiovascular diseases.

12.
PeerJ Comput Sci ; 10: e1912, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38660202

RESUMEN

Multimodal emotion recognition techniques are increasingly essential for assessing mental states. Image-based methods, however, tend to focus predominantly on overt visual cues and often overlook subtler mental state changes. Psychophysiological research has demonstrated that heart rate (HR) and skin temperature are effective in detecting autonomic nervous system (ANS) activities, thereby revealing these subtle changes. However, traditional HR tools are generally more costly and less portable, while skin temperature analysis usually necessitates extensive manual processing. Advances in remote photoplethysmography (r-PPG) and automatic thermal region of interest (ROI) detection algorithms have been developed to address these issues, yet their accuracy in practical applications remains limited. This study aims to bridge this gap by integrating r-PPG with thermal imaging to enhance prediction performance. Ninety participants completed a 20-min questionnaire to induce cognitive stress, followed by watching a film aimed at eliciting moral elevation. The results demonstrate that the combination of r-PPG and thermal imaging effectively detects emotional shifts. Using r-PPG alone, the prediction accuracy was 77% for cognitive stress and 61% for moral elevation, as determined by a support vector machine (SVM). Thermal imaging alone achieved 79% accuracy for cognitive stress and 78% for moral elevation, utilizing a random forest (RF) algorithm. An early fusion strategy of these modalities significantly improved accuracies, achieving 87% for cognitive stress and 83% for moral elevation using RF. Further analysis, which utilized statistical metrics and explainable machine learning methods including SHapley Additive exPlanations (SHAP), highlighted key features and clarified the relationship between cardiac responses and facial temperature variations. Notably, it was observed that cardiovascular features derived from r-PPG models had a more pronounced influence in data fusion, despite thermal imaging's higher predictive accuracy in unimodal analysis.

13.
Adv Sci (Weinh) ; : e2307718, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38647263

RESUMEN

Results from two independent clinical validation studies for measuring hemodynamics at the patient's bedside using a compact finger probe are reported. Technology comprises a barometric pressure sensor, and in one implementation, additionally, an optical sensor for photoplethysmography (PPG) is developed, which can be used to measure blood pressure and analyze rhythm, including the continuous detection of atrial fibrillation. The capabilities of the technology are shown in several form factors, including a miniaturized version resembling a common pulse oximeter to which the technology could be integrated in. Several main results are presented: i) the miniature finger probe meets the accuracy requirements of non-invasive blood pressure instrument validation standard, ii) atrial fibrillation can be detected during the blood pressure measurement and in a continuous recording, iii) a unique comparison between optical and pressure sensing mechanisms is provided, which shows that the origin of both modalities can be explained using a pressure-volume model and that recordings are close to identical between the sensors. The benefits and limitations of both modalities in hemodynamic monitoring are further discussed.

14.
Adv Sci (Weinh) ; : e2310022, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38647403

RESUMEN

Minimally invasive and non-invasive hemodynamic monitoring technologies have recently gained more attention, driven by technological advances and the inherent risk of complications in invasive techniques. In this article, an experimental non-invasive system is presented that effectively combines the capabilities of spectrometry, photoplethysmography (PPG), and arterial pressure measurement. Both time- and wavelength-resolved optical signals from the fingertip are measured under external pressure, which gradually increased above the level of systolic blood pressure. The optical channels measured at 434-731 nm divided into three groups separated by a group of channels with wavelengths approximately between 590 and 630 nm. This group of channels, labeled transition band, is characterized by abrupt changes resulting from a decrease in the absorption coefficient of whole blood. External pressure levels of maximum pulsation showed that shorter wavelengths (<590 nm) probe superficial low-pressure blood vessels, whereas longer wavelengths (>630 nm) probe high-pressure arteries. The results on perfusion indices and DC component level changes showed clear differences between the optical channels, further highlighting the importance of wavelength selection in optical hemodynamic monitoring systems. Altogether, the results demonstrated that the integrated system presented has the potential to extract new hemodynamic information simultaneously from macrocirculation to microcirculation.

15.
J Clin Sleep Med ; 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38648118

RESUMEN

STUDY OBJECTIVES: This study investigated the impact of APAP therapy on vascular behavior and its potential to lower cardiovascular risk in patients with OSA, as well as differentiating APAP therapy heterogeneity. METHODS: All participants were diagnosed with OSA by portable monitoring, and pulse wave parameters and cardiac risk composite parameter index (CRI) were obtained by photoplethysmography before and after APAP. Clustering analysis of pulse wave parameters before APAP in the high-risk population was performed using k-means clustering. Linear regression was used to assess the associations of changes in CRI and pulse wave parameters with clinical characteristics. RESULTS: Eighty-two patients with OSA underwent APAP therapy. The CRI after APAP was significantly lower than before APAP (0.38± 0.33 and 0.58 ± 0.31, respectively; p < 0.001). All pulse wave parameters (except irregular pulse) were significantly different (p < 0.001) in patients with OSA and in the high-risk responders group after versus before APAP. The differences in pulse wave parameters after versus before APAP were not significant in the high-risk non-responders group, except for RCRD and pulse rate variability. Four clusters were obtained from the clustering analysis of pulse wave parameters before APAP in the high-risk responders group. CONCLUSIONS: APAP reduces the CRI in patients with OSA by altering vascular behavior. Overnight photoplethysmography monitoring of pulse wave parameters can be used to assess whether patients with OSA will benefit from APAP.

16.
Europace ; 26(4)2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38630867

RESUMEN

AIMS: Photoplethysmography- (PPG) based smartphone applications facilitate heart rate and rhythm monitoring in patients with paroxysmal and persistent atrial fibrillation (AF). Despite an endorsement from the European Heart Rhythm Association, validation studies in this setting are lacking. Therefore, we evaluated the accuracy of PPG-derived heart rate and rhythm classification in subjects with an established diagnosis of AF in unsupervised real-world conditions. METHODS AND RESULTS: Fifty consecutive patients were enrolled, 4 weeks before undergoing AF ablation. Patients used a handheld single-lead electrocardiography (ECG) device and a fingertip PPG smartphone application to record 3907 heart rhythm measurements twice daily during 8 weeks. The ECG was performed immediately before and after each PPG recording and was given a diagnosis by the majority of three blinded cardiologists. A consistent ECG diagnosis was exhibited along with PPG data of sufficient quality in 3407 measurements. A single measurement exhibited good quality more often with ECG (93.2%) compared to PPG (89.5%; P < 0.001). However, PPG signal quality improved to 96.6% with repeated measurements. Photoplethysmography-based detection of AF demonstrated excellent sensitivity [98.3%; confidence interval (CI): 96.7-99.9%], specificity (99.9%; CI: 99.8-100.0%), positive predictive value (99.6%; CI: 99.1-100.0%), and negative predictive value (99.6%; CI: 99.0-100.0%). Photoplethysmography underestimated the heart rate in AF with 6.6 b.p.m. (95% CI: 5.8 b.p.m. to 7.4 b.p.m.). Bland-Altman analysis revealed increased underestimation in high heart rates. The root mean square error was 11.8 b.p.m. CONCLUSION: Smartphone applications using PPG can be used to monitor patients with AF in unsupervised real-world conditions. The accuracy of AF detection algorithms in this setting is excellent, but PPG-derived heart rate may tend to underestimate higher heart rates.


Asunto(s)
Fibrilación Atrial , Humanos , Fibrilación Atrial/diagnóstico , Teléfono Inteligente , Fotopletismografía , Frecuencia Cardíaca , Valor Predictivo de las Pruebas , Electrocardiografía/métodos , Algoritmos
17.
Technol Health Care ; 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38517823

RESUMEN

BACKGROUND: Photoplethysmography (PPG) signals are sensitive to motion-induced interference, leading to the emergence of motion artifacts (MA) and baseline drift, which significantly affect the accuracy of PPG measurements. OBJECTIVE: The objective of our study is to effectively eliminate baseline drift and high-frequency noise from PPG signals, ensuring that the signal's critical frequency components remain within the range of 1 ∼ 10 Hz. METHODS: This paper introduces a novel hybrid denoising method for PPG signals, integrating Variational Mode Decomposition (VMD) with an improved wavelet threshold function. The method initially employs VMD to decompose PPG signals into a set of narrowband intrinsic mode function (IMF) components, effectively removing low-frequency baseline drift. Subsequently, an improved wavelet thresholding algorithm is applied to eliminate high-frequency noise, resulting in denoised PPG signals. The effectiveness of the denoising method was rigorously assessed through a comprehensive validation process. It was tested on real-world PPG measurements, PPG signals generated by the Fluke ProSim™ 8 Vital Signs Simulator with synthesized noise, and extended to the MIMIC-III waveform database. RESULTS: The application of the improved threshold function let to a substantial 11.47% increase in signal-to-noise ratio (SNR) and an impressive 26.75% reduction in root mean square error (RMSE) compared to the soft threshold function. Furthermore, the hybrid denoising method improved SNR by 15.54% and reduced RMSE by 37.43% compared to the improved threshold function. CONCLUSION: This study proposes an effective PPG denoising algorithm based on VMD and an improved wavelet threshold function, capable of simultaneously eliminating low-frequency baseline drift and high-frequency noise in PPG signals while faithfully preserving their morphological characteristics. This advancement establishes the foundation for time-domain feature extraction and model development in the domain of PPG signal analysis.

18.
Indian J Endocrinol Metab ; 28(1): 60-64, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38533291

RESUMEN

Introduction: Patients with diabetes mellitus monitor their blood glucose at home with monitors that require a drop of blood or use a continuous glucose monitoring device that implants a small needle in the body. However, both cause discomfort to the patients which may inhibit them for regular blood glucose checks. Photoplethysmogram (PPG) sensing technology is an approach for non-invasive blood glucose measurement and PPG sensors can be used to predict hypoglycaemic episodes. InChcek is a PPG-based non-invasive glucose monitor. However, its accuracy has not been checked yet. Hence, this study aimed to evaluate the accuracy of InCheck, a non-invasive glucose monitor for the estimation of blood glucose. Methods: In a tertiary care hospital, patients who came for blood glucose estimation were tested for blood glucose non-invasively on the InCheck device and then by the laboratory method (glucose oxidase-peroxidase). These two readings were compared. We used International Organization for Standardization (ISO) 15197:2013 (95% of values should be within ± 15 mg/dL of reference reading if reference glucose <100 mg/dL or within ± 15% of reference reading if reference glucose ≥100 mg/dL and 99% of the values should be within zones A and B in consensus error grid), and Surveillance Error Grid for analyzing the accuracy. Results: A total of 1223 samples were analyzed. There was a significant difference between the reference method glucose level (135 [Q1-Q3: 97 - 179] mg/dL) and monitor-measured glucose level (188.33 [Q1-Q3: 167.33-209.33] mg/dL) (P < 0.0001). A total of 18.5% of readings were following ISO 15197:2013 criteria and 67.25% of coordinates were within zone A and zone B of the consensus error grid. In the surveillance error grid analysis, about 29.4% of values were in the no-risk zone, 51.8% in slight risk, 18.6% in moderate risk, and 0.2% were in the severe risk zone. Conclusion: The accuracy of the InCheck device for the estimation of blood glucose by PPG signal is not following the recommended guidelines. Hence, further research is necessary for programming or redesigning the hardware and software for a better result from this optical sensor-based non-invasive home glucose monitor.

19.
Phys Eng Sci Med ; 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38504066

RESUMEN

Remote photoplethysmography (rPPG) technology is a non-contact physiological signal measurement method, characterized by non-invasiveness and ease of use. It has broad application potential in medical health, human factors engineering, and other fields. However, current rPPG technology is highly susceptible to variations in lighting conditions, head pose changes, and partial occlusions, posing significant challenges for its widespread application. In order to improve the accuracy of remote heart rate estimation and enhance model generalization, we propose PulseFormer, a dual-path network based on transformer. By integrating local and global information and utilizing fast and slow paths, PulseFormer effectively captures the temporal variations of key regions and spatial variations of the global area, facilitating the extraction of rPPG feature information while mitigating the impact of background noise variations. Heart rate estimation results on the popular rPPG dataset show that PulseFormer achieves state-of-the-art performance on public datasets. Additionally, we establish a dataset containing facial expressions and synchronized physiological signals in driving scenarios and test the pre-trained model from the public dataset on this collected dataset. The results indicate that PulseFormer exhibits strong generalization capabilities across different data distributions in cross-scenario settings. Therefore, this model is applicable for heart rate estimation of individuals in various scenarios.

20.
Front Cardiovasc Med ; 11: 1350726, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38529332

RESUMEN

Introduction: Aortic stiffness plays a critical role in the evolution of cardiovascular diseases, but the assessment requires specialized equipment. Photoplethysmography (PPG) and single-lead electrocardiogram (ECG) are readily available in healthcare and wearable devices. We studied whether a brief PPG registration, alone or in combination with single-lead ECG, could be used to reliably estimate aortic stiffness. Methods: A proof-of-concept study with simultaneous high-resolution index finger recordings of infrared PPG, single-lead ECG, and finger blood pressure (Finapres) was performed in 33 participants [median age 44 (range 21-66) years, 19 men] and repeated within 2 weeks. Carotid-femoral pulse wave velocity (cfPWV; two-site tonometry with SphygmoCor) was used as a reference. A brachial single-cuff oscillometric device assessed aortic pulse wave velocity (aoPWV; Arteriograph) for further comparisons. We extracted 136 established PPG waveform features and engineered 13 new with improved coupling to the finger blood pressure curve. Height-normalized pulse arrival time (NPAT) was derived using ECG. Machine learning methods were used to develop prediction models. Results: The best PPG-based models predicted cfPWV and aoPWV well (root-mean-square errors of 0.70 and 0.52 m/s, respectively), with minor improvements by adding NPAT. Repeatability and agreement were on par with the reference equipment. A new PPG feature, an amplitude ratio from the early phase of the waveform, was most important in modelling, showing strong correlations with cfPWV and aoPWV (r = -0.81 and -0.75, respectively, both P < 0.001). Conclusion: Using new features and machine learning methods, a brief finger PPG registration can estimate aortic stiffness without requiring additional information on age, anthropometry, or blood pressure. Repeatability and agreement were comparable to those obtained using non-invasive reference equipment. Provided further validation, this readily available simple method could improve cardiovascular risk evaluation, treatment, and prognosis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...